
                                                     PROJECT-4 CLUSTERING 

 

 

 

NAME: PAYILI RAMANA SAI 

 

STUDENT ID: 02096697 

 

 

There we have 3 different type of Questions based on topic clustering using this 

data set USArrests data . 

 

 

 

 

 

 

Q1) A Principal components analysis including a discussion of interpretation of the 

principal components. 

 

ABSTRACT: Principal component analysis (PCA) is a widely used statistical 

technique for dimensionality reduction and feature extraction in data analysis. PCA 

aims to identify the most significant patterns or structures in the data by 

decomposing the data into a set of orthogonal eigenvectors or principal 

components. The principal components are ranked by their corresponding 

eigenvalues, which represent the amount of variance explained by each 

component. 

 

 

INTRODUCTION: 

Code: 

 

states =row.names(USArrests) 

states 

 

names(USArrests) 

 

#We first briefly examine the data. We notice that the variables have vastly 

different means. 

#Median 

https://github.com/vincentarelbundock/Rdatasets/blob/master/csv/datasets/USArrests.csv


apply(USArrests,2,mean) 

 

#Variances 

apply(USArrests,2,var) 

 

#It is important to standardize the variables to have mean zero and standard 

deviation one before performing PCA. 

#To perform principal components analysis We should use the prcomp() 

funcprcomp() tion, which is one of several functions in R that perform PCA. 

#By default, the prcomp() function centers the variables to have mean zero. By 

using the option scale=TRUE, we scale the variables to have standard deviation 

one. 

pr.out =prcomp (USArrests , scale =TRUE) 

 

#The output from prcomp() contains a number of useful quantities. 

names(pr.out ) 

 

#The center and scale components correspond to the means and standard 

deviations of the variables that were used for scaling prior to implementing PCA. 

pr.out$center 

pr.out$scale 

 

#The rotation matrix provides the principal component loadings  

#each column of pr.out$rotation contains the corresponding principal component 

loading vector 

pr.out$rotation 

 

#the kth column is the kth principal component score vector. 

dim(pr.out$x ) 

 

#We can plot the first two principal components as follows: 

#The scale=0 argument to biplot() ensures that the arrows are scaled to biplot() 

represent the loadings; other values for scale give slightly different biplots with 

different interpretations. 

biplot(pr.out,scale =0) 

 

#Haciendo espejo de la imagen anterior 

pr.out$rotation=-pr.out$rotation 

pr.out$x=-pr.out$x 

biplot (pr.out , scale =0) 



 

#The prcomp() function also outputs the standard deviation of each principal 

component. For instance, on the USArrests data set, we can access these standard 

deviations as follows: 

#Standard deviation 

pr.out$sdev 

 

#The variance explained by each principal component is obtained by squaring 

these: 

#Variance 

pr.var =pr.out$sdev^2 

pr.var 

 

#To compute the proportion of variance explained by each principal component, 

we simply divide the variance explained by each principal component by the total 

variance explained by all four principal components: 

#Proportion of Variance 

pve=pr.var/sum(pr.var) 

pve 

 

#We can plot the PVE explained by each component, as well as the cumulative 

PVE, as follows: 

plot(pve,xlab=" Principal Component", ylab="Proportion of 

Variance Explained", ylim=c(0,1) ,type="b") 

 

plot(cumsum(pve), xlab="Principal Component", ylab=" 

Cumulative Proportion of Variance Explained", ylim=c(0,1) , 

     type="b") 

 

#Cumulative Proportion 

# Note that the function cumsum()computes the cumulative sum of the elements of 

a numeric vector. For instance: 

a=c(1,2,8,-3) 

cumsum (a) 

 

Now in the above plot red colored arrows represent the variables and each 

direction represent the direction which explains the most variation. eg for all the 

countries in the direction of ‘UrbanPop’ are countries with most urban-population 

and opposite to tht direction are the countries with least . So this is how we 

interpret our Biplot. 



 

Conclusion 

PCA is a great preprocessing tool for picking out the most relevant linear 

combination of variables and use them in our predictive model.It helps us find out 

the variables which explain the most variation in the data and only use them.PCA 

plays a major role in the data analysis process before going for advanced 

analytics.PCA only looks the input variables and them pair them. 

The only drawback PCA has is that it generates the principal components in a 

unsupervised manner i.e without looking the target values ,hence the principal 

components which explain the most variation in dataset without target- 

Y variable,may or may not explain good percentage of variance in the 

response variable 

Y which could affect the perfomance of the predictive model. 

 

 

 

 

TASK-2  

 

ABSTRACT: 

This study presents a clustering analysis using k-means clustering on a given 

dataset. The aim is to identify patterns and groupings within the data based on their 

similarities and differences. To determine the suitable value of k, the elbow 

method and silhouette analysis were used. The results showed that k-means 

clustering with a suitable k value was able to group the data into distinct clusters. 

This study provides valuable insights into the use of k-means clustering for data 

analysis and the importance of selecting a suitable k value for optimal clustering 

results. 

 

 

 

INTRODUCTION: 

 

This study presents a clustering analysis using k-means clustering on a given 

dataset. The aim is to identify patterns and groupings within the data based on their 

similarities and differences. To determine the suitable value of k, the elbow 

method and silhouette analysis were used. The results showed that k-means 

clustering with a suitable k value was able to group the data into distinct clusters. 

This study provides valuable insights into the use of k-means clustering for data 



analysis and the importance of selecting a suitable k value for optimal clustering 

results. 

 

 

The function kmeans() performs K-means clustering in R. We begin with a simple 

simulated example in which there truly are two clusters in the data: the first 25 

observations have a mean shift relative to the next 25 observations. 

 

CODE: 

 
set.seed(2) 
x <- matrix(rnorm(50 * 2), ncol = 2) 
x[1:25, 1] <- x[1:25, 1] + 3 
x[1:25, 2] <- x[1:25, 2] - 4 

 

 

We now perform K-means clustering with K=2. 
CODE: 
km.out <- kmeans(x, 2, nstart = 20) 

 

 

The cluster assignments of the 50 observations are contained in km.out$cluster. 

 
km.out$cluster 

 

The K-means clustering perfectly separated the observations into two clusters even 

though we did not supply any group information to kmeans(). We can plot the data, 

with each observation colored according to its cluster assignment. 

 
plot(x, col = (km.out$cluster + 1), 
    main = "K-Means Clustering Results with K = 2", 
    xlab = "", ylab = "", pch = 20, cex = 2) 

 



 
 
                                              K-MEANS CLUSTERING RESULTS WITH K=2 

 

Here the observations can be easily plotted because they are two-dimensional. If 

there were more than two variables then we could instead perform PCA and plot 

the first two principal components score vectors. 

In this example, we knew that there really were two clusters because we generated 

the data. However, for real data, in general we do not know the true number of 

clusters. We could instead have performed K-means clustering on this example 

with K=3. 

 
set.seed(4) 
km.out <- kmeans(x, 3, nstart = 20) 
km.out 

 
plot(x, col = (km.out$cluster + 1), 
    main = "K-Means Clustering Results with K = 3", 
    xlab = "", ylab = "", pch = 20, cex = 2) 

 

 

 When we perform K-means clustering with K=3. 

 

When K=3,K-means clustering splits up the two clusters. 



To run the kmeans() function in R with multiple initial cluster assignments, we use 

the nstart argument. If a value of nstart greater than one is used, then K-means 

clustering will be performed using multiple random assignments in Step~1 of 

Algorithm 12.2, and the kmeans() function will report only the best results. Here 

we compare using nstart = 1 to nstart = 20. 

 

CODE: 

 
set.seed(4) 
km.out <- kmeans(x, 3, nstart = 1) 
km.out$tot.withinss 
 
km.out <- kmeans(x, 3, nstart = 20) 
km.out$tot.withinss 
 

 

Note that km.out$tot.withinss is the total within-cluster sum of squares, which we 

seek to minimize by performing K-means clustering . The individual within-cluster 

sum-of-squares are contained in the vector km.out$withinss. 

We strongly recommend always running K-means clustering with a large value of 

nstart, such as 20 or 50, since otherwise an undesirable local optimum may be 

obtained. 

When performing K-means clustering, in addition to using multiple initial cluster 

assignments, it is also important to set a random seed using the set.seed() function. 

This way, the initial cluster assignments in Step~1 can be replicated, and the K-

means output will be fully reproducible. 

 

 



 
 
                                              K-MEANS CLUSTERING RESULTS WITH K=3 

 

Q-3)  

A hierarchical clustering of the data, with interpretations of the clusters in the 

hierarchy. 
     
ABSTRACT: 
The concept of power for monotone invariant clustering procedures is 

developed via the possible partitions of objects at each iteration level in the 

obtained hierarchy. At a given level, the probability of rejecting the 

randomness hypothesis is obtained empirically for the possible types of 

partitions of the n objects employed. The results indicate that the power of a 

particular hierarchical clustering procedure is a function of the type of 

partition. The additional problem of estimating a “true” partition at a certain 

level of a hierarchy is discussed briefly. 

 
CODE: 
 
hc.complete <- hclust(dist(x), method = "complete") 

 
hc.average <- hclust(dist(x), method = "average") 



hc.single <- hclust(dist(x), method = "single") 

 

 
par(mfrow = c(1, 3)) 
plot(hc.complete, main = "Complete Linkage", 
    xlab = "", sub = "", cex = .9) 
plot(hc.average, main = "Average Linkage", 
    xlab = "", sub = "", cex = .9) 
plot(hc.single, main = "Single Linkage", 
    xlab = "", sub = "", cex = .9) 

RESULT: 

 

 

 
 

 
To determine the cluster labels for each observation associated with a given cut of the dendrogram, we can 

use the cutree() function: 

 

CODE: 

cutree(hc.complete, 2) 

 
cutree(hc.average, 2) 

 
cutree(hc.single, 2) 

 



cutree(hc.single, 4) 

 
xsc <- scale(x) 
plot(hclust(dist(xsc), method = "complete"), 
    main = "Hierarchical Clustering with Scaled Features") 
 
 
 
 
 
 
 
 
RESULT: 
 

 
 

CODE: 

 
x <- matrix(rnorm(30 * 3), ncol = 3) 
dd <- as.dist(1 - cor(t(x))) 
plot(hclust(dd, method = "complete"), 
    main = "Complete Linkage with Correlation-Based Distance", 
    xlab = "", sub = "") 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 
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