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Issues 
One of the biggest and most prevalent crab species is the huge 
crustacean known as the Dungeness crab, which is frequently seen 
along the Pacific coast. The sizes of the pre- and post-molt carapaces 
were recorded in a database that was created for the analysis of adult 
female Dungeness crabs. Both a lab seƫng and an ocean habitat were 
used to molt the crabs in the database. Our goal is to look into the 
relaƟonship between the size of Dungeness crabs' carapaces before 
and aŌer molƟng. We'll then summarize the results and include any 
standard errors for the coefficients 0 and 1. 

Findings 
A striking link between the two variables was found in our research of 
the pre- and post-molt carapace sizes in Dungeness crabs. We 
discovered a strong linear associaƟon between pre-molt size and post-
molt size, as demonstrated by an impressive correlaƟon coefficient of 
0.9903699 and a remarkably small p-value of 2.2e-16 (less than 0.001). 
These outstanding staƟsƟcal findings show that there is a significant 
difference between pre-molt size and post-molt size in Dungeness 
crabs, and they give strong evidence against the null hypothesis. Any 
by using the Bootstrap method calculated  standard errors of the 
coefficients β0, β1. 

 The standard error for coefficient β0 is 2.734877. 
 The standard error for coefficient β1 is 0.01868114. 

 



Discussions 
In designing the linear model between the two variables, we 
considered pre-size variable as dependent variable and post-size as 
independent variable and developed the linear equaƟon between the 
two variables. 

 

 

By using the linear equaƟon esƟmated the standard errors in  
coefficient β0, β1 by Bootstrap method. 

 

Appendix A: Method 
We imported the data on post-molt and pre-molt carapace sizes of 
Dungeness crabs into R-Studio. Pre-molt size, which represents the 
size of the crab's shell before molƟng, was analyzed as a funcƟon of 
post molt size, the size of the shell aŌer molƟng. 

Calculated the correlaƟon coefficient the two variables and developed 
the linear model between the variables, analyzed the summary of the 
model and found that p-value is very less which shows that model is 
accurate. 

By using the Bootstrap method calculated the standard errors in 
coefficient β0, β1. 

 

 

 

 



Appendix B: Results 
CorrelaƟon coefficient between the variables is  0.9903699. 
> cor<-cor.test(data$presize,data$postsize) 
> cor 
 
 Pearson's product-moment correlation 
 
data:  data$presize and data$postsize 
t = 155.08, df = 470, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.9884701 0.9919580 
sample estimates: 
      cor  
0.9903699  
 
 

Linear model summary 
> mod1<-lm(presize~postsize , data= data) 
> summary(mod1) 
 
Call: 
lm(formula = presize ~ postsize, data = data) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-6.1557 -1.3052  0.0564  1.3174 14.6750  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -25.21370    1.00089  -25.19   <2e-16 *** 
postsize      1.07316    0.00692  155.08   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.199 on 470 degrees of freedom 
Multiple R-squared:  0.9808, Adjusted R-squared:  0.9808  
F-statistic: 2.405e+04 on 1 and 470 DF,  p-value: < 2.2e-16 

 

Bootstrap Method 
> error1 <- sd(mat[,1]) 
> error2 <- sd(mat[,2]) 
> error1 
[1] 2.767597 
> error2 
[1] 0.01892139 

 

 

 

 

 



Appendix C: Code 
install.packages('readxl') 

library(readxl) 

 

file<-"C:\\Users\\sasik\\OneDrive\\Desktop\\crab_molt.xls"  

data <- read_excel(file, sheet = 1) 

data 

str(data) 

summary(data) 

colnames(data) 

cor<-cor.test(data$presize,data$postsize) 

cor 

 

mod1<-lm(presize~postsize , data= data) 

summary(mod1) 

 

 

# bootstrap 

b_s <- funcƟon(data) 

  { 

bs_sample <- data[sample(nrow(data), replace = TRUE), ] 

  model2 <- lm(presize ~ postsize, data = bs_sample) 

  coef(model2) 

} 



 

n_b_s <- 1000 

mat <- matrix(nrow = n_b_s, ncol = 2) 

for (i in 1:n_b_s) { 

  mat[i,] <- b_s(data) 

} 

 

error1 <- sd(mat[,1]) 

error2 <- sd(mat[,2]) 

error1 

error2 

 

 

 

 


